Specification of deformation congruence models using combinatorial iterative DIA testing procedure

Author:

Nowel KrzysztofORCID

Abstract

AbstractDeformation congruence models form the basis for conventional deformation analysis (CDA). In geometrical sense, these models connect an epochal object states—represented by its characteristic points—at stable/congruent points to disclose possible deformations. To this day, the deformation congruence models are usually specified using the global congruence test (GCT) procedure which, however, has a weakness in the case of multiple displacements. More precisely, the GCT procedure is based on consecutive point-by-point specification which may suffer from so-called displacement smearing. To overcome the above weakness, a revolutionary—in the context of GCT—concept (two methods) involving combinatorial possibilities was suggested in recent years. Admittedly, this concept avoids the problem of consecutive point-by-point specification. Nevertheless, it generates another weakness, namely the problem of the comparison of different-dimensional models. This paper makes a step forward in this new combinatorial field and discusses a more sophisticated combinatorial procedure, denoted as CIDIA. It was shown that, thanks to an appropriately used the possibilities of combinatorics and generalized likelihood ratio tests performed in the detection–identification–adaptation (DIA) iterative steps, the above weaknesses can be overcome. In the context of GCT, the suggested procedure has rather evolutionary—than revolutionary—character and the general concepts of both procedures have similar heuristic substantiation. To demonstrate the efficacy of CIDIA against GCT and the two existing combinatorial methods, various deformation scenarios were being randomized independently many times with the use of comprehensive computer simulations and then processed. Generally, the obtained results confirmed the statement that the suggested CIDIA procedure—unlike the existing combinatorial methods—can be substantially more resistant to displacement smearing than the GCT procedure, at no significant costs. The efficacy of CIDIA—unlike the ones of the two existing combinatorial methods—turned out always higher (on average by several percentages) than the one of GCT for all considered deformation scenarios. At the same time, the CIDIA procedure turned out substantially less time-consuming than the other combinatorial methods.

Funder

University of Warmia and Mazury in Olsztyn

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Reference65 articles.

1. Arnold SF (1981) The theory of linear models and multivariate analysis. Wiley, New York

2. Aydin C (2012) Power of global test in deformation analysis. J Surv Eng 138(2):51–55

3. Aydin C (2017) Effects of displaced reference points on deformation analysis. J Surv Eng 143(3):04017001

4. Aydin C, Demirel H (2005) Computation of Baarda’s lower bound of the non-centrality parameter. J Geod 78(7–8):437–441

5. Baarda W (1968) A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, Publ. on Geodesy, New Series 2(5)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3