Performance of Galileo satellite products determined from multi-frequency measurements

Author:

Duan BingbingORCID,Hugentobler UrsORCID,Montenbruck OliverORCID,Steigenberger PeterORCID

Abstract

AbstractEach Galileo satellite provides coherent navigation signals in four distinct frequency bands. International GNSS Service (IGS) analysis centers (ACs) typically determine Galileo satellite products based on the E1/E5a dual-frequency measurements due to the software limitation and the limited tracking capability of other signals in the early time. The goal of this contribution is to evaluate the quality of Galileo satellite products determined by using different dual-frequency (E1/E5a, E1/E5b, E1/E5, E1/E6) and multi-frequency (E1/E5a/E5b/E5/E6) measurements based on different sizes of ground networks. The performance of signal noise, the consistency of frequency-specific satellite phase center offsets and the stability of satellite phase biases are assessed in advance to confirm preconditions for multi-frequency processing. Orbit results from different dual-frequency measurements show that orbit precision determined from E1/E6 is clearly worse (about 35%) than that from other dual-frequency solutions. In view of a similar E1, E5a, E5b and E6 measurement quality, the degraded E1/E6 orbit performance is mainly attributed to the unfavorable noise amplification in the respective ionosphere-free linear combination. The advantage of using multi-frequency measurements over dual-frequency for precise orbit determination is clearly visible when using small networks. For instance, the ambiguity fixing rate is 80% for the multi-frequency solution while it is less than 40% for the dual-frequency solution if 150 s data sampling is employed in a 15-station network. Higher fixing rates result in better (more than 30%) satellite orbits and more robust satellite clock and phase bias products. In general, satellite phase bias products determined from a 20-station (or more) network are precise enough to conduct precise point positioning with ambiguity resolution (PPP-AR) applications. Multi-frequency kinematic PPP-AR solutions always show 5–10% precision improvement compared to those computed from dual-frequency observations.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3