Sharp phase-field modeling of isotropic solidification with a super efficient spatial resolution

Author:

Fleck MichaelORCID,Schleifer FelixORCID

Abstract

AbstractThe phase-field method provides a powerful framework for microstructure evolution modeling in complex systems, as often required within the framework of integrated computational materials engineering. However, spurious grid friction, pinning and grid anisotropy seriously limit the resolution efficiency and accuracy of these models. The energetic resolution limit is determined by the maximum dimensionless driving force at which reasonable model operation is still ensured. This limit turns out to be on the order of 1 for conventional phase-field models. In 1D, grid friction and pinning can be eliminated by a global restoration of Translational Invariance (TI) in the discretized phase-field equation. This is called the sharp phase-field method, which allows to choose substantially coarser numerical resolutions of the diffuse interface without the appearance of pinning. In 3D, global TI restricts the beneficial properties to a few specific interface orientations. We propose an accurate scheme to restore TI locally in the local interface normal direction. The new sharp phase-field model overcomes grid friction and pinning in three-dimensional simulations, and can accurately operate at dimensionless driving forces up to the order of $$10^{4}$$ 10 4 . At one-grid-point interface resolutions, exceptional degrees of isotropy can be achieved, if further the largely inhomogeneous latent heat release at the advancing solid-liquid interface is mitigated. Imposing a newly proposed source term regularization, the new model captures the formation of isotropic seaweed structures without spurious dendritic selection by grid anisotropy, even at one-grid-point interface resolutions.

Funder

Deutsche Forschungsgemeinschaft

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3