Multiscale modelling of particulate composites with spherical inclusions

Author:

Elbana Abdalla,Khennane AmarORCID,Hazell Paul J.

Abstract

AbstractThis paper presents a novel and effective strategy for modelling three-dimensional periodic representative volume elements (RVE) of particulate composites. The proposed method aims to generate an RVE that can represent the microstructure of particulate composites with hollow spherical inclusions for homogenization (e.g., deriving the full-field effective elastic properties). The RVE features periodic and randomised geometry suitable for the application of periodic boundary conditions in finite element analysis. A robust algorithm is introduced following the combined theories of Monte Carlo and collision driven molecular dynamics to pack spherical particles in random spatial positions within the RVE. This novel technique can achieve a high particle-matrix volume ratio of up to 50% while still maintaining geometric periodicity across the domain and random distribution of inclusions within the RVE. Another algorithm is established to apply periodic boundary conditions (PBC) to precisely generate full field elastic properties of such microstructures. Furthermore, a user-friendly automatic ABAQUS CAE plug-in tool ‘Gen_PRVE’ is developed to generate three-dimensional RVE of any spherical particulate composite or porous material. Gen_PRVE provides users with a great deal of flexibility to generate Representative Volume Elements (RVEs) with varying side dimensions, sphere sizes, and periodic mesh resolutions. In addition, this tool can be effectively utilized to conduct a rapid mesh convergence study, an RVE size sensitivity study, and investigate the impact of inclusion/matrix volume fraction on the solution. Lastly, examples of these applications are presented.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3