‘Grey-Box-Processing’: a novel validation method for use in vehicle safety applications

Author:

Soot ThomasORCID,Dlugosch MichaelORCID,Fritsch JensORCID,Ichinose Noriyo,Hiermaier StefanORCID,Duddeck FabianORCID

Abstract

AbstractThe ‘Grey-Box-Processing’ method, presented in this article, allows for the integration of simulated and experimental data sets with the overall objective of a comprehensive validation of simulation methods and models. This integration leads to so-called hybrid data sets. They allow for a spatially and temporally resolved identification and quantitative assessment of deviations between experimental observations and results of corresponding finite element simulations in the field of vehicle safety. This is achieved by the iterative generation of a synthetic, dynamic solution corridor in the finite element domain, which is deduced from experimental observations and restricts the freedom of movement of a virtually analyzed structure. The hybrid data sets thus contain physically based information about the interaction (e.g. acting forces) between the solution corridor and the virtually analyzed structure. An additional result of the ‘Grey-Box-Processing’ is the complemented three-dimensional reconstruction of the incomplete experimental observations (e.g. two-dimensional X-ray movies). The extensive data sets can be used not only for the assessment of the similarity between experiment and simulation, but also for the efficient derivation of improvement measures in order to increase the predictive power of the used model or method if necessary. In this study, the approach is presented in detail. Simulation-based investigations are conducted using generic test setups as well as realistic pedestrian safety test cases. These investigations show the general applicability of the method as well as the significant informative value and interpretability of generated hybrid data sets.

Funder

Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut EMI

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3