Adaptive density-based robust topology optimization under uncertain loads using parallel computing

Author:

Herrero-Pérez David,Picó-Vicente Sebastián Ginés,Martínez-Barberá Humberto

Abstract

AbstractThis work presents an efficient parallel implementation of density-based robust topology optimization (RTO) using adaptive mesh refinement (AMR) schemes permitting us to address the problem with modest computational resources. We use sparse grid stochastic collocation methods (SCMs) for transforming the RTO problem into a weighted multiple-loading deterministic problem at the collocation points. The calculation of these deterministic problems and the functional sensitivity is computationally expensive. We combine distributed-memory parallel computing and AMR techniques to address the problem efficiently. The former allows us to exploit the computational resources available, whereas the latter permits us to increase performance significantly. We propose the parallel incremental calculation of the deterministic problems and the contribution to the functional sensitivity maintaining a similar memory allocation to the one used in the deterministic counterpart. The cumulative computing uses buffers to adapt the evaluation at the collocation points to the parallel computing resources permitting the exploitation of the embarrassing parallelism of SCMs. We evaluate the deterministic problems in a coarse mesh generated for each topology optimization iteration to increase the performance. We perform the regularization and design variable update in a fine mesh to obtain an equivalent design to the one generated in such a mesh. We evaluate the proposal in two- and three-dimensional problems to test its feasibility and scalability. We also check the performance improvement using computational buffers in parallel computing nodes. Finally, we compare the proposal to the same approach using different preconditioners without AMR schemes showing significant performance improvements.

Funder

Agencia Estatal de Investigación

Universidad Politécnica de Cartagena

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3