Few-shot anime pose transfer

Author:

Wang Pengjie,Yang Kang,Yuan Chengzhi,Li Houjie,Tang Wen,Yang Xiaosong

Abstract

AbstractIn this paper, we propose a few-shot method for pose transfer of anime characters—given a source image of an anime character and a target pose, we transfer the pose of the target to the source character. Despite recent advances in pose transfer on real people images, these methods typically require large numbers of training images of different person under different poses to achieve reasonable results. However, anime character images are expensive to obtain they are created with a lot of artistic authoring. To address this, we propose a meta-learning framework for few-shot pose transfer, which can well generalize to an unseen character given just a few examples of the character. Further, we propose fusion residual blocks to align the features of the source and target so that the appearance of the source character can be well transferred to the target pose. Experiments show that our method outperforms leading pose transfer methods, especially when the source characters are not in the training set.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3