Fast rendering of central and peripheral human visual aberrations across the entire visual field with interactive personalization

Author:

Csoba IstvánORCID,Kunkli RolandORCID

Abstract

AbstractWith the recent progress made in areas such as head-mounted displays and vision-correcting devices, there is a growing interest in fast and personalized algorithms for simulating aberrated human vision. Existing vision-simulating approaches are generally hindered by the lack of personalization, computational cost of rendering, and limited types of supported aberrations. This paper presents a fast vision simulation method with interactive personalization capabilities for simulating arbitrary central and peripheral aberrations of the human eye. First, we describe a novel, neural network-based solution for efficiently estimating the physical structure of the simulated eye and calculating the necessary Zernike aberration coefficients for computing the point-spread functions with varying pupil sizes, focus distances, and incidence angles. Our new approach operates in the sub-second regime and produces highly accurate outputs, facilitating the interactive personalization of vision simulation. Next, we present an improved PSF interpolation method for an existing tiled PSF splatting algorithm for rendering. The proposed algorithm significantly improves the computational performance and memory efficiency of the previous approach, allowing the simulation of peripheral vision with arbitrary visual aberrations in low-latency applications. Following the description of our new techniques, we evaluate their performance characteristics and simulation accuracies on several different eye conditions and test scenarios and compare our results to several previous vision simulation algorithms.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3