1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). URL http://tensorflow.org/. Software available from tensorflow.org
2. Achom, A., Basu, A.: Design and evaluation of unicode compliance Meitei/Meetei Mayek keyboard layout. In: 2015 International Symposium on Advanced Computing and Communication (ISACC), pp. 90–97. IEEE (2015)
3. Al-Ma’adeed, S., Elliman, D., Higgins, C.A.: A data base for Arabic handwritten text recognition research. In: Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 485–489. IEEE (2002)
4. Al-Ohali, Y., Cheriet, M., Suen, C.: Databases for recognition of handwritten Arabic cheques. Pattern Recognit. 36(1), 111–121 (2003)
5. Alaei, A., Nagabhushan, P., Pal, U.: A benchmark Kannada handwritten document dataset and its segmentation. In: 2011 International Conference on Document Analysis and Recognition, pp. 141–145. IEEE (2011)