1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
2. Ali, M., Jones, M.W., Xie, X., Williams, M.: TimeCluster dimension reduction applied to temporal data for visual analytics. Vis. Comput. 5(6), 1013–1026 (2019)
3. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the People: The Role of Humans in Interactive Machine Learning. AI Mag. 5(4), 105 (2014). https://doi.org/10.1609/aimag.v35i4.2513
4. Ash, J.T., Adams, R.P.: On warm-starting neural network training (2019). https://doi.org/10.48550/ARXIV.1910.08475. https://arxiv.org/abs/1910.08475
5. Baumgartl, H., Tomas, J., Buettner, R., Merkel, M.: A novel deep-learning approach for automated non-destructive testing in quality assurance based on convolutional neural networks. ACEX-2019 Proceedings (2019)