Abstract
AbstractSystemic insecticides such as neonicotinoids are widely used in seed coating practices for pest control in many crops, e.g., corn. Their success is due to their ability to protect the whole plant, from the roots to the upper leaves, but their use at high amounts is causing possible adverse effects on non-target animals exposed to contaminated pollen, nectar, leaves, and dust emitted during sowing. In 2018, the European Union banned some neonicotinoids and fipronil as seed coating insecticides in open fields. Consequently, the methylcarbamate methiocarb and less-toxic neonicotinoids, e.g., thiacloprid, have been authorized and largely used as alternative pesticides for corn seed coating. Here, an analytical protocol based on QuEChERS extraction/purification procedure and analysis by liquid chromatography-mass spectrometry has been optimized for the identification and the quantification of methiocarb, thiamethoxam, thiacloprid, and their metabolites in guttation drops, the xylem fluid excreted at leaf margins, and in leaves of corn plants grown from coated seeds. Although methiocarb is a non-systemic pesticide, we unexpectedly found high concentrations of its metabolites in both guttations and leaves, whereas methiocarb itself was below detection limits in most of the samples. The methiocarb main metabolite, methiocarb sulfoxide, was found at a mean concentration of 0.61 ± 1.12 µg mL−1 in guttation drops and 4.4 ± 2.1 µg g−1 in leaves. Conversely, parent compounds of neonicotinoids (thiamethoxam, thiacloprid) are systemically distributed in corn seedlings. This result raises safety concerns given that methiocarb sulfoxide is more toxic than the parent compound for some non-target species.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC