Artificial intelligence-based solutions for climate change: a review

Author:

Chen Lin,Chen Zhonghao,Zhang Yubing,Liu Yunfei,Osman Ahmed I.ORCID,Farghali Mohamed,Hua Jianmin,Al-Fatesh Ahmed,Ihara Ikko,Rooney David W.,Yap Pow-Seng

Abstract

AbstractClimate change is a major threat already causing system damage to urban and natural systems, and inducing global economic losses of over $500 billion. These issues may be partly solved by artificial intelligence because artificial intelligence integrates internet resources to make prompt suggestions based on accurate climate change predictions. Here we review recent research and applications of artificial intelligence in mitigating the adverse effects of climate change, with a focus on energy efficiency, carbon sequestration and storage, weather and renewable energy forecasting, grid management, building design, transportation, precision agriculture, industrial processes, reducing deforestation, and resilient cities. We found that enhancing energy efficiency can significantly contribute to reducing the impact of climate change. Smart manufacturing can reduce energy consumption, waste, and carbon emissions by 30–50% and, in particular, can reduce energy consumption in buildings by 30–50%. About 70% of the global natural gas industry utilizes artificial intelligence technologies to enhance the accuracy and reliability of weather forecasts. Combining smart grids with artificial intelligence can optimize the efficiency of power systems, thereby reducing electricity bills by 10–20%. Intelligent transportation systems can reduce carbon dioxide emissions by approximately 60%. Moreover, the management of natural resources and the design of resilient cities through the application of artificial intelligence can further promote sustainability.

Funder

SEUPB

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3