In silico design and evaluation of multi-epitope dengue virus vaccines: a promising approach to combat global dengue burden

Author:

Saha Otun,Razzak Abdur,Sarker Nikkon,Rahman Nymur,Zahid Abdullah bin,Sultana Afroza,Shishir Tushar Ahmed,Bahadur Newaz Mohammed,Rahaman Md. Mizanur,Hossen Foysal,Amin Mohammad Ruhul,Akter Mir Salma

Abstract

AbstractDengue virus, a pervasive mosquito-borne pathogen, imposes a substantial global health burden and is responsible for numerous fatalities annually globally, with tropical and sub-tropical regions particularly susceptible to dengue outbreaks. Despite decades of efforts, there has been no effective treatment or prevention for dengue, which makes it a life-threatening disease. Hence, this study proposes an innovative bioinformatics-driven approach to construct a vaccine targeting the dengue virus. The study involved a comprehensive analysis of conserved regions of dengue virus serotypes 1–4's non-structural proteins (NS1, NS3, and NS5) and structural protein (E) to predict the potential B & T-cell epitopes which were linked with appropriate adjuvants and linkers to generate four distinct vaccine candidates. The constructed vaccine models underwent rigorous evaluation, considering physicochemical attributes, structural integrity, population coverage, and immune system response through simulation. The results confirm that these vaccine candidates are non-allergenic, non-toxic, antigenic, and immunogenic. Additionally, they exhibit 99.70% world population coverage and 100% conservation across all dengue strains, which is crucial for vaccine efficacy. A Ramachandran plot showed that 95.6% of the amino acid residues of the candidates belong to the optimal zone, while around 4% are in additional allowed regions. Further, molecular docking and dynamic simulation of interaction with the human toll-like receptor 4, a fundamental component of innate immunity, was carried out to gain more insight into interaction dynamics. As a result of these analyses, the candidates' binding dynamics and structural stability were revealed. Overall, this study presents promising vaccine candidates for addressing dengue's global health burden. Their robust design and demonstrated immunogenicity make them attractive candidates for further experimental testing and development as potential vaccines against current strains and future variants.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3