EMHD radiating fluid flow along a vertical Riga plate with suction in a rotating system

Author:

Khatun Sheela,Islam Muhammad Minarul,Mollah Md. Tusher,Poddar SaykatORCID,Alam Md. Mahmud

Abstract

AbstractThis study is performed on the numerical investigation of electro-magnetohydrodynamic (EMHD) radiating fluid flow nature along an infinitely long vertical Riga plate with suction in a rotating system. The prevailing equations are generated from the Navier–Stokes’ and energy equations. A uniform suction velocity is introduced to control the flow. The prevailing boundary layer (BL) equations are the stuff to delineate the mechanical features of the flowing nature along with the electromagnetic device (Riga plate). Accordingly, the use of usual transformations on the equations transformed those into a coupled dimensionless system of non-linear partial differential equations (PDEs). After conversion, the elucidation of the set of equations is conducted numerically by an explicit finite difference method (FDM). The criteria for stable and converging solutions are constructed to find restrictions on various non-dimensional parameters. The retrieved restrictions are $$P_{r} \ge 0.19,\,$$ P r 0.19 , $$R_{d} \ge 0.1,\,\,$$ R d 0.1 , $$S \ge 1,$$ S 1 , $$E_{c} = 0.01\,\,$$ E c = 0.01 and $$0 < R \le 0.1$$ 0 < R 0.1 . Furthermore, sensitivity tests on mesh and time as well as comparison within the literature have been demonstrated in graphical and tabular form. Finally, the important findings of the non-dimensional parameters influences have been portrayed in graphical manner by using the MATLAB R2015a tool. A substantial uprise is noted for both the velocities (secondary and primary) under the rising actions of the modified Hartmann number, whereas the suction parameter suppresses both the velocities.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3