A CFD study on hydrocarbon mean residence time in a horizontal oil–water separator

Author:

Acharya TathagataORCID,Potter Terry

Abstract

AbstractThis study presents computational fluid dynamics analyses on oil–water flow characteristics in a horizontal separator. The performance of these vessels are inferred from mean residence time and cumulative residence time distribution of the hydrocarbon phase inside the separator. The authors model a separator used by previous researchers and evaluate mean residence time of the hydrocarbon phase in a two-phase mixture of oil and water. Three different water-cuts of 21%, 32%, and 57% are used. Additional analyses are done to assess how certain geometric features of the separator influence hydrocarbon mean residence time. The results show that the addition of a second perforated baffle plate does not improve the hydrocarbon mean residence time significantly. However, introducing a downward slanting throat section between the primary zone and the gravity separation zone improves the hydrocarbon mean residence time at 21% and 32% water-cuts. The results suggest oil–water separators with a throat section may be more efficient than regular horizontal separators without the throat section at low water-cuts.

Funder

School of Natural Sciences, Mathematics, and Engineering, California State University, Bakersfield

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference25 articles.

1. Evans F (1974) Equipment design handbook for refineries and plants, vol 2. Gulf Publishing, Houston, Texas

2. Arnold K, Stewart M (2008) Surface production operations, 3rd edn. Elsevier, New York

3. Sivalls CR (1987) Oil and gas separation design manual. Sivalls Incorporated, Odessa

4. Watkins RN (1967) Sizing separators and accumulators. Hydrocarb Process 46(11):253–256

5. Bradley HB (ed) (1987) Petroleum engineering handbook. Society of Petroleum Engineers, Richardson, Texas

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3