Author:
Nchouwet Zakari,Ntieche Benjamin,Yongue Fouateu Rose,Ntoumbe Mama,Mounjouohou Mahomed Aziz,Atsalang Chimene Grace Staelle,Abomo Olomo Marcelle Nathalie,Amidou Moundi
Abstract
AbstractIn the Central Cameroon Shear Zone, several studies were focused on granitoids and very few on mafic rocks. Here we report the petrography, geochemistry and mineralogy of the Mfengou-Manki mafic rocks in order to constrain their petrogenesis and tectonic settings and the role of lithospheric and asthenospheric mantle sources in their genesis. The studied mafic rocks are subdivided into columnar jointed basalts and mafic dykes. Clinopyroxene thermobarometry indicates that the mafic dykes crystallized at a temperature of 1071 to 1193 °C and a pressure of 4 to 12 kbar while the columnar jointed basalts emplaced at a temperature of 1064 to 1152 °C and 2 to 13 kbar pressure. The mafic dykes and columnar jointed basalts present high La/Sm, Sm/Yb, Nb/Yb and Th/Yb ratios, indicating garnet to spinel transition zone mantle source. The multi-element diagram of the mafic dykes display enrichment in Nb, Ta, Pb and Ti and depletion in Th, U, Ce and Zr compared to that of the columnar jointed basalts (slight depletion in Nb and Ta and pronounced depletion in U, Pb and Zr and enrichment in Cs, Ba and Rb) indicating the little involvement of the sub-continental lithospheric mantle to the formation of the columnar jointed basalts. The Nb/La ratio > 1 for the mafic dykes and < 1 for the columnar jointed basalts also suggest the derivation of the mafic dykes from the asthenospheric mantle and the columnar jointed basalts from the mixed lithospheric-asthenospheric mantle due to the sub-continental lithospheric mantle delamination under the Central Cameroon Shear Zone.
Publisher
Springer Science and Business Media LLC