Optical properties of synthesized Au/Ag Nanoparticles using 532 nm and 1064 nm pulsed laser ablation: effect of solution concentration

Author:

AdibAmini Shaghayegh,Sari Amir HosseinORCID,Dorranian Davoud

Abstract

AbstractThe primary objective of this experimental research is to introduce the capacity of laser irradiation into the synthesis of bimetallic nanoparticles from noble metals. Gold and silver nanoparticles are produced through the laser ablating gold and silver targets in distilled water. Originally, the samples are synthesized by using Nd:YAG laser with 1064 nm wavelength and 7 ns pulse width. Following this, solutions mixed with different volumetric ratios, are irradiated by the second harmonic of the said laser at 532 nm wavelength. The absorption peak of gold nanoparticles around 530 nm, is used to transfer the laser energy to nanoparticles and synthesize Au/Ag bimetallic nanoparticles. The wavelength and volumetric ratio of solutions are the experiment's variables. The bimetallic nanoparticles are characterized as follows: X-ray diffraction pattern, spectroscopy in the range of UV–Vis-NIR and IR, Photoluminescence spectrum, Dynamic light scattering, and Fourier transform infrared spectroscopy. Additionally, FE-SEM and TEM images are used to study the size and morphology of nanoparticles. One of the aims of the research is to investigate the effects of laser wavelength and different volumetric concentrations on the optical properties of Au/Ag bimetallic nanoparticles. On the other hand, the study revealed that silver concentration and laser wavelength in the synthesis of Au/Ag bimetallic nanoparticles with different structures, cause the formation of crystalline structure, growth of grain size, and therefore silver oxide reduction.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3