Antibacterial activity of biosynthesized zinc oxide nanoparticles using Kombucha extract

Author:

El-Fallal Amira A.,Elfayoumy Reham A.,El-Zahed Mohamed M.ORCID

Abstract

AbstractAntibacterial resistance is a growing global vital medical problem when the innovation and development of new antibiotics are dwindling. Different nanomaterials were synthesized and developed as safe and effective alternative antimicrobial agents. The current study highlights the effect of the antibacterial activity of newly biosynthesized zinc oxide nanoparticles (ZnO NPs) obtained from Kombucha extract. Production of ZnO NPs was optimized and the synthesized nanoparticles were characterized using UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential and transmission electron microscope (TEM) analysis. The optimum conditions for ZnO NPs production were at temperature 30 °C, pH 9 and 25 mM of Zn(NO3)2.6H2O. The ZnO NPs biosynthesis was detected in the extract within 24 h. at 35 °C in dark conditions. The XRD pattern displayed 100, 101, 110, and 103 crystal planes. FTIR spectrum showed bands of 1° and 2° amines at 2922.6 cm−1 and a stretching vibration band of vinyl at 1657.5 cm−1. In addition, the results confirmed the positive charge (19 ± 3 mV) and crystalline nature of spherical-shaped ZnO NPs with an average size of 23 ± 1.5 nm. The antibacterial activity of ZnO NPs was tested against different American-type culture collection strains. ZnO NPs exhibited minimum inhibition concentration (MIC) values of 25 µg/ml against Escherichia coli ATCC25922, 30 µg/ml against Staphylococcus aureus ATCC25923 and Pseudomonas aeruginosa ATCC27853, 35 µg/ml against Serratia liquefaciens OQ071699.1 and S. saprophyticus OQ071703.1 and 40 µg/ml against Lysinibacillus fusiformis OQ071701.1 and Klebsiella pneumoniae ATCC33495. Ultrastructure TEM study of the treated bacteria by MIC of ZnO NPs confirmed their highly toxic action on the bacterial cell wall, resulting in bacterial cell membrane rupture. Treated bacteria appeared as extensively damaged cells with the formation of vacuoles and lipids. The provided approach of ZnO NPs in combination with Kombucha SCOBY has a promising future in overcoming bacterial resistance problems in place of using antibiotics.

Funder

Damiatta University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3