Functionalization of hydrophobic nonwoven cotton fabric for oil and water repellency

Author:

Saha Pran Krisna,Mia RonyORCID,Zhou YangORCID,Ahmed TaosifORCID

Abstract

AbstractHighly hydrophobic surfaces exhibit a remarkable feature in the repellency of oil and water. However, the relatively complex preparation process, high costs, and harmful compounds have largely limited their applications. This research aim is to fabricate hydrophobic nonwoven fabrics with low-cost and nontoxic materials. Despite various wettable materials, nonwoven cotton fabric material bearing hydrophobic surfaces has been received significant attention. This is mainly owing to its easy handling, high flexibility, environment friendly, low cost, biodegradability, high efficiency, and easily scalable fabrication. In this study, a simple chemical modification method using hexadecyltrimethoxysilane (HDTMS) with ethanol which is a better method in comparison with other methods since it is an inexpensive, simple method, and offers an easy adjustment of chemical composition required for a surface to show hydrophobic behaviors. The wetting behavior of cotton samples was investigated by water contact angle measurement. The best result comes from 2 ml HDTMS with 40 ml ethanol at 60 °C. The result shows that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 126 ± 2°. It also shows that standard oil and water repellency, which offers an opportunity to accelerate the large-scale production of hydrophobic textile materials for new industrial applications. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3