Abstract
AbstractIn this paper, a Bayesian fusion technique (BFT) based on maximum power point tracking (MPPT) is developed for the photovoltaic (PV) system that can exhibit faster and accurate tracking under partially shaded conditions (PSCs). Although the conventional hill-climbing algorithms have fast tracking capabilities, they are prone to steady-state oscillations and may not guarantee global peak under partially shaded conditions. Contrarily, the meta-heuristic-based techniques may promise a global peak solution, but they are computationally inefficient and take significant time for tracking. To address this problem, a BFT is proposed which combines the solutions obtained from conventional incremental conductance algorithm and Jaya optimization algorithm to produce better responses under various PSCs. The effectiveness of the proposed BFT-based MPPT is evaluated by comparing it with various MPPT methods, viz. incremental conductance, particle swarm optimization (PSO), and Jaya optimization algorithms in MATLAB/Simulink environment. From the various case studies carried, the overall average tracking speed with more than 99% accuracy is less than 0.25 s and having minimum steady-state oscillations. Even under the wide range of partially shaded conditions, the proposed method exhibited superior MPPT compared to the existing methods with tracking speed less than 0.1 s to achieve 99.8% tracking efficiency. A detailed comparison table is provided by comparing with other popular existing MPPT methodologies.
Funder
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献