On using machine learning algorithms for motorcycle collision detection

Author:

Rodegast Philipp,Maier Steffen,Kneifl Jonas,Fehr Jörg

Abstract

AbstractGlobally, motorcycles attract vast and varied users. However, since the rate of severe injury and fatality in motorcycle accidents far exceeds that of passenger car accidents, efforts have been directed towards increasing passive safety systems. Impact simulations show that the risk of severe injury or death in the event of a motorcycle-to-car impact can be greatly reduced if the motorcycle is equipped with passive safety measures such as airbags and seat belts. For the passive safety systems to be activated, a collision must be detected within milliseconds for a wide variety of impact configurations, but under no circumstances may it be falsely triggered. For the challenge of reliably detecting impending collisions, this paper presents an investigation towards the applicability of machine learning algorithms. First, a series of simulations of accidents and driving operation is introduced to collect data to train machine learning classification models. Their performance is henceforth assessed and compared via multiple representative and application-oriented criteria.

Funder

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Haworth N. Powered two wheelers in a changing world-challenges and opportunities. Accid Anal Prevent. 2012;44(1):12–8. https://doi.org/10.1016/j.aap.2010.10.031.

2. World Health Organization: WHO Global Status Report on Road Safety 2018. World Health Organization, Geneva 2018; https://www.who.int/publications/i/item/9789241565684

3. Destatis: Verkehrsunfälle 2021 (in German). Verkehr Fachserie 8 Reihe 7 2022; https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-jahr-2080700217004.pdf?__blob=publicationFile

4. Savino G, Lot R, Massaro M, Rizzi M, Symeonidis I, Will S, Brown J. Active safety systems for powered two-wheelers: a systematic review. Traffic Injury Prevent. 2020;21(1):78–86. https://doi.org/10.1080/15389588.2019.1700408.

5. Dean M, Haus SH, Sherony R, Gabler HC. Potential crash benefits of motorcycle-detecting automatic emergency braking systems. In: proceedings of the IRCOBI conference, Munich, Germany, 2021; 39– 50 . http://www.ircobi.org/wordpress/downloads/irc21/pdf-files/2115.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3