Abstract
Abstract
The present study aims to compare SARIMA and Holt–Winters model forecasts of mean monthly flow at the V Aniversario basin, western Cuba. Model selection and model assessment are carried out with a rolling cross-validation scheme using mean monthly flow observations from the period 1971–1990. Model performance is analyzed in one- and two-year forecast lead times, and comparisons are made based on mean squared error, root mean squared error, mean absolute error and the Nash–Sutcliffe efficiency; all these statistics are computed from observed and simulated time series at the outlet of the basin. The major findings show that Holt–Winters models had better performance in reproducing the mean series seasonality when the training observations were insufficient, while for longer training subsets, both models were equally competitive in forecasting one year ahead. SARIMA models were found to be more reliable for longer lead-time forecasts, and their limitations after being trained on short observation periods are due to overfitting problems.
Article Highlights
Comparison based on rolling cross-validation revealed the models forecasts sensibility to available observations amount.
HW and SARIMA models perform better when limited observations or long-view forecasting, respectively, otherwise they do similar.
HW models were superior modeling less variable monthly flows while SARIMA models better forecast the highly variable periods.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献