Multi-objective optimization of AAJM process parameters for cutting of B4C/Gr particles reinforced Al 7075 composites using RSM-TOPSIS approach

Author:

Kolli MurahariORCID,Ram Prasad A. V. S,Naresh Dasari Sai

Abstract

Abstract Abstract The present study deals with the machining of hybrid Al 7075/B4C/Gr composite using Abrasive Aqua Jet Machining. The effects of selected input factors, i.e., water jet pressure (WJP), stand-off distance (SOD), and traverse speed (TS) on the performance characteristics, namely taper angle (TA), surface roughness (Ra), and the material removal rate (MRR) are investigated. The experimental runs and test strategies are formulated using the Response Surface Methodology-Central Composite Design approach. Analysis of Variance (ANOVA) was used to examine the effect of input factors and their interactions with performance characteristics. MRR, Ra, and TA optimum condition and mathematical equations were also developed. Further, the multi-optimization method “Technique for Order of Preference by Similarity to Ideal Solution” is considered to find out the best combinations of input factors for optimized output factors on the hybrid composite. The ANOVA results confirm that among the input factors, WJP and SOD are the most significant factors, and the percentage distribution of input factors are found to be jet pressure (55.21%), stand-off distance (23.36%), and traverse speed (2.56%). The multi-objective optimum conditions of the input factors are WJP (A1) 210 bar, SOD (B1), and TS (C3) 30 mm/min, that produce optimal values of the considered responses, i.e., MRR up to 4.8703 mm3/min, Ra up to 3.57 μm and TA up to 0.189°. The TA has improved by 49.6% through the multi-objective optimum results when compared with single parameter optimized results. Article Highlights Hybrid Al7075/B4C/Gr composite fabricated through the rotary stir casting technique Experimental planning and designing layouts using Response Surface Methodology scheme and mathematical equations are produced with Design Expert 11.0. The best TA was obtained by RSM-TOPSIS approach, found at a lower WJP and SOD and a higher TS.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3