Abstract
Abstract
Abstract
The present study deals with the machining of hybrid Al 7075/B4C/Gr composite using Abrasive Aqua Jet Machining. The effects of selected input factors, i.e., water jet pressure (WJP), stand-off distance (SOD), and traverse speed (TS) on the performance characteristics, namely taper angle (TA), surface roughness (Ra), and the material removal rate (MRR) are investigated. The experimental runs and test strategies are formulated using the Response Surface Methodology-Central Composite Design approach. Analysis of Variance (ANOVA) was used to examine the effect of input factors and their interactions with performance characteristics. MRR, Ra, and TA optimum condition and mathematical equations were also developed. Further, the multi-optimization method “Technique for Order of Preference by Similarity to Ideal Solution” is considered to find out the best combinations of input factors for optimized output factors on the hybrid composite. The ANOVA results confirm that among the input factors, WJP and SOD are the most significant factors, and the percentage distribution of input factors are found to be jet pressure (55.21%), stand-off distance (23.36%), and traverse speed (2.56%). The multi-objective optimum conditions of the input factors are WJP (A1) 210 bar, SOD (B1), and TS (C3) 30 mm/min, that produce optimal values of the considered responses, i.e., MRR up to 4.8703 mm3/min, Ra up to 3.57 μm and TA up to 0.189°. The TA has improved by 49.6% through the multi-objective optimum results when compared with single parameter optimized results.
Article Highlights
Hybrid Al7075/B4C/Gr composite fabricated through the rotary stir casting technique
Experimental planning and designing layouts using Response Surface Methodology scheme and mathematical equations are produced with Design Expert 11.0.
The best TA was obtained by RSM-TOPSIS approach, found at a lower WJP and SOD and a higher TS.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献