Surface tension of steel at high temperatures

Author:

Volpp JoergORCID

Abstract

AbstractSurface tension is a material property that is needed to describe fluid behaviour, which impacts industrial processes, in which molten material is created, such as thermal cutting, welding and Additive Manufacturing. In particular when using metals, the material properties at high temperatures are often not known. This is partly because of limited possibilities to measure those properties, limitations of temperature measurement methods and a lack of theoretical models that describe the circumstances at such high temperatures sufficiently. When using beam heat sources, such as a laser beam, temperatures far above the melting temperature are reached. Therefore, it is mandatory to know the material properties at such high temperatures in order to describe the material behaviour in models and gain understanding of the occurring effects. Therefore, in this work, an experimental surface wave evaluation method is suggested in combination with thermal measurements in order to derive surface tension values of steel at higher temperatures than reported in literature. The evaluation of gravity-capillary waves in high-speed video recordings shows a steeper decrease of surface tension values than the extrapolation of literature values would predict, while the surface tension values seem not to decrease further above boiling temperature. Using a simplified molecular dynamic model based on pair correlation, a similar tendency of surface values was observed, which indicates that the surface tension is an effect requiring at least two atomic layers. The observed and calculated decreasing trend of the surface tension indicates an exponential relation between surface tension and temperature.

Funder

Vetenskapsrådet

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3