Automatic textual description of interactions between two objects in surveillance videos

Author:

Youssef Wael F.,Haidar SibaORCID,Joly Philippe

Abstract

AbstractThe purpose of our work is to automatically generate textual video description schemas from surveillance video scenes compatible with police incidents reports. Our proposed approach is based on a generic and flexible context-free ontology. The general schema is of the form [actuator] [action] [over/with] [actuated object] [+ descriptors: distance, speed, etc.]. We focus on scenes containing exactly two objects. Through elaborated steps, we generate a formatted textual description. We try to identify the existence of an interaction between the two objects, including remote interaction which does not involve physical contact and we point out when aggressivity took place in these cases. We use supervised deep learning to classify scenes into interaction or no-interaction classes and then into subclasses. The chosen descriptors used to represent subclasses are keys in surveillance systems that help generate live alerts and facilitate offline investigation.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference31 articles.

1. Youssef WF, Haidar S, Joly P (2018) Generic video surveillance description ontology. In: 1st international conference on big data and cyber-security intelligence (BDCSIntell 2018). BDCSIntell 2018. 6

2. Andrei Georgios E, Daniel H et al (2021): Language and vision workshop - 2018. http://languageandvision.com/2018.html. Accessed Feb 2021

3. Aafaq N, Mian A, Liu W, Gilani SZ, Shah M (2018) Video description: a survey of methods, datasets and evaluation metrics

4. Venugopalan S, Xu H, Donahue J, Rohrbach M, Mooney R, Saenko, K (2014) Translating videos to natural language using deep recurrent neural networks

5. Pan Y, Mei T, Yao T, Li H, Rui Y (2016) Jointly modeling embedding and translation to bridge video and language. In: proceedings of the ieee conference on computer vision and pattern recognition. pp 4594–4602

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3