Design of voltage and current controller parameters using small signal model-based pole-zero cancellation method for improved transient response in microgrids

Author:

Pavan Kumar Y. V.ORCID,Bhimasingu RavikumarORCID

Abstract

Abstract Microgrids are supposed to provide stable power for seamless utility-grid interaction under all conditions as stated by IEEE-1547 standard. But, the use of power electronic inverter makes the microgrid sensitive to transients than synchronous generator-based plants. This degrades the voltage/frequency responses during transients, which can lead to transient stability problem if not controlled properly. Hence, the design of effective closed-loop voltage and current (V/I) controllers is highly desired to control the inverter output against the disturbances. The V/I controllers are based on PI (proportional-cum-integral) formulas. Thus, the effectiveness of V/I controllers relies on how accurate that their gain parameters are tuned. Many PI-tuning methods have been developed in the literature, but, it is yet difficult to identify a suitable method for an application. Also, only a few researchers have focused on the microgrids due to the complexity involved in its controller design by the presence of V/I cascaded dual-loop. Hence, to address this problem, this paper proposes a novel way of designing V/I controller parameters by using pole-zero cancellation method. This method is implemented by deriving the microgrid’s small-signal model. This improves the transient response through reduced system order and/or alleviated sluggish/marginal-stable/unstable poles by adding zeros at same places where those poles are laid, to in effect cancel them. The efficacy of the proposed method over existing methods is assessed by plotting frequency and voltage responses under different test conditions. From the simulation results, it is witnessed that the proposed method relatively improved the transient characteristics of microgrids. Article Highlights Analyzes the applicability of conventional PI tuning methods for microgrid controllers’ design. Proposes a novel small signal model based pole-zero cancellation method for the design of microgrid controllers. Enhances the gain margin, which improves the stabilization capacity of the system when subjected to disturbances. Improves the transient behavior of frequency and voltage responses, which ensure the safety of sensitive loads.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3