Author:
Ruzhansky Michael,Suragan Durvudkhan,Yessirkegenov Nurgissa
Abstract
AbstractIn this paper we describe the Euler semigroup $$\{e^{-t\mathbb {E}^{*}\mathbb {E}}\}_{t>0}$$
{
e
-
t
E
∗
E
}
t
>
0
on homogeneous Lie groups, which allows us to obtain various types of the Hardy–Sobolev and Gagliardo–Nirenberg type inequalities for the Euler operator $$\mathbb {E}$$
E
. Moreover, the sharp remainder terms of the Sobolev type inequality, maximal Hardy inequality and $$|\cdot |$$
|
·
|
-radial weighted Hardy–Sobolev type inequality are established.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference24 articles.
1. Balinsky, A., Evans, W.D., Hundertmark, D., Lewis, R.T.: On inequalities of Hardy–Sobolev type. Banach J. Math. Anal. 2(2), 94–106 (2008)
2. Balinsky, A.A., Evans, W.D., Lewis, R.T.: The Analysis and Geometry of Hardy’s Inequality. Universitext. Springer, Cham (2015)
3. Bliss, G.A.: An integral inequality. J. Lond. Math. Soc. 5(1), 40–46 (1930)
4. Brezis, H., Lieb, E.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86 (1985)
5. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 217–237 (1997)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献