Author:
Armstrong Becky,Brown Jonathan H.,Clark Lisa Orloff,Courtney Kristin,Lin Ying-Fen,McCormick Kathryn,Ramagge Jacqui
Abstract
AbstractIn this note, we present criteria that are equivalent to a locally compact Hausdorff groupoid G being effective. One of these conditions is that G satisfies the C*-algebraic local bisection hypothesis; that is, that every normaliser in the reduced twisted groupoid C*-algebra is supported on an open bisection. The semigroup of normalisers plays a fundamental role in our proof, as does the semigroup of normalisers in cyclic group C*-algebras.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference19 articles.
1. Armstrong, B.: A uniqueness theorem for twisted groupoid C*-algebras. J. Funct. Anal. 283, 1–33 (2022). https://doi.org/10.1016/j.jfa.2022.109551
2. Armstrong, B., de Castro, G.G., Clark, L.O., Courtney, K., Lin, Y.-F., McCormick, K., Ramagge, J., Sims, A., Steinberg, B.: Reconstruction of twisted Steinberg algebras. Int. Math. Res. Not. IMRN 2021, 2474–2542 (2023). https://doi.org/10.1093/imrn/rnab291
3. Armstrong, B., Clark, L.O., Courtney, K., Lin, Y.-F., McCormick, K., Ramagge, J.: Twisted Steinberg algebras. J. Pure Appl. Algebra 226, 1–33 (2022). https://doi.org/10.1016/j.jpaa.2021.106853
4. Brown, J.H., Clark, L.O., Farthing, C., Sims, A.: Simplicity of algebras associated to étale groupoids. Semigroup Forum 88, 433–452 (2014). https://doi.org/10.1007/s00233-013-9546-z
5. Brown, J.H., Fuller, A.H., Pitts, D.R., Reznikoff, S.A.: Graded C*-algebras and twisted groupoid C*-algebras. New York J. Math. 27, 205–252 (2021)