Supervised machine learning for audio emotion recognition

Author:

Cunningham Stuart,Ridley Harrison,Weinel Jonathan,Picking Richard

Abstract

AbstractThe field of Music Emotion Recognition has become and established research sub-domain of Music Information Retrieval. Less attention has been directed towards the counterpart domain of Audio Emotion Recognition, which focuses upon detection of emotional stimuli resulting from non-musical sound. By better understanding how sounds provoke emotional responses in an audience, it may be possible to enhance the work of sound designers. The work in this paper uses the International Affective Digital Sounds set. A total of 76 features are extracted from the sounds, spanning the time and frequency domains. The features are then subjected to an initial analysis to determine what level of similarity exists between pairs of features measured using Pearson’s r correlation coefficient before being used as inputs to a multiple regression model to determine their weighting and relative importance. The features are then used as the input to two machine learning approaches: regression modelling and artificial neural networks in order to determine their ability to predict the emotional dimensions of arousal and valence. It was found that a small number of strong correlations exist between the features and that a greater number of features contribute significantly to the predictive power of emotional valence, rather than arousal. Shallow neural networks perform significantly better than a range of regression models and the best performing networks were able to account for 64.4% of the variance in prediction of arousal and 65.4% in the case of valence. These findings are a major improvement over those encountered in the literature. Several extensions of this research are discussed, including work related to improving data sets as well as the modelling processes.

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Computer Science Applications,Hardware and Architecture

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Audio Emotion Recognition based on Song modality using Conv1D vs Conv2D;PRZEGLĄD ELEKTROTECHNICZNY;2024-07-24

2. Advancing Text Emotion Recognition: BERT and BiLSTM Integration;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26

3. MMD-MII Model: A Multilayered Analysis and Multimodal Integration Interaction Approach Revolutionizing Music Emotion Classification;International Journal of Computational Intelligence Systems;2024-04-22

4. Facial Expression Recognition Using Machine Learning and Deep Learning Techniques: A Systematic Review;SN Computer Science;2024-04-13

5. Deep CNN with late fusion for real time multimodal emotion recognition;Expert Systems with Applications;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3