Abstract
AbstractToxoplasmosis is a disease of primary concern for Hawaiian monk seals (Neomonachus schauinslandi), due to its apparently acute lethality and especially heavy impacts on breeding female seals. The disease-causing parasite, Toxoplasma gondii, depends on cats to complete its life cycle; thus, in order to understand how this pathogen infects marine mammals, it is essential to understand aspects of the terrestrial ecosystem and land-to-sea transport. In this study, we constructed a three-tiered model to assess risk of Hawaiian monk seal exposure to T. gondii oocysts: (1) oocyst contamination as a function of cat population characteristics; (2) land-to-sea transport of oocysts as a function of island hydrology, and (3) seal exposure as a function of habitat and space use. We were able to generate risk maps highlighting watersheds contributing the most to oocyst contamination of Hawaiian monk seal habitat. Further, the model showed that free-roaming cats most associated with humans (pets or strays often supplementally fed by people) were able to achieve high densities leading to high levels of oocyst contamination and elevated risk of T. gondii exposure.
Publisher
Springer Science and Business Media LLC