Abstract
AbstractIn this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference6 articles.
1. Hall, P.: Some sufficient conditions for a group to be nilpotent. Illinois J. Math. 2, 787–801 (1958)
2. Hurley, T.C.: On the class of the stability group of a series of subgroups. J. London Math. Soc. 2(41), 33–41 (1990)
3. Hurley, T.C., Ward, M.A.: Commutator subgroups related to a free product. J. London Math. Soc. 2(41), 42–50 (1990)
4. Kaloujnine, L.: Über gewisse Beziehungen zwischen einer Gruppe und ihren Automorphismen, Berliner Mathematische Tagung, 164–172 (1953)
5. Mohamed, I.J.: On series of subgroups related to groups of automorphisms. Proc. London Math. Soc. 3(13), 711–723 (1963)