Abstract
AbstractFulton proves that the matrix Schubert variety $$\overline{X_{\pi }} \cong Y_{\pi } \times \mathbb {C}^q$$
X
π
¯
≅
Y
π
×
C
q
can be defined via certain rank conditions encoded in the Rothe diagram of $$\pi \in S_N$$
π
∈
S
N
. In the case where $$Y_{\pi }:={{\,\textrm{TV}\,}}(\sigma _{\pi })$$
Y
π
:
=
TV
(
σ
π
)
is toric (with respect to a $$(\mathbb {C}^*)^{2N-1}$$
(
C
∗
)
2
N
-
1
action), we show that it can be described as a toric (edge) ideal of a bipartite graph $$G^{\pi }$$
G
π
. We characterize the lower dimensional faces of the associated so-called edge cone $$\sigma _{\pi }$$
σ
π
explicitly in terms of subgraphs of $$G^{\pi }$$
G
π
and present a combinatorial study for the first-order deformations of $$Y_{\pi }$$
Y
π
. We prove that $$Y_{\pi }$$
Y
π
is rigid if and only if the three-dimensional faces of $$\sigma _{\pi }$$
σ
π
are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of $$\pi $$
π
.
Funder
Berlin Mathematical School
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference14 articles.
1. Altmann, K.: One parameter families containing three dimensional toric Gorenstein singularities. In: London Mathematical Society Lecture Note Series, pp. 21–50. Cambridge University Press (2000)
2. Altmann, K., Hausen, J.: Polyhedral divisors and algebraic torus actions. Math. Ann. 334, 557–607 (2006)
3. Altmann, K., Ilten, N.O., Petersen, L., Süß,H., Vollmert, R.: The geometry of T-varieties. In: Pragacz, P. (eds) Contributions to Algebraic Geometry. Impanga Lecture Notes, pp. 17–69. European Mathematical Society (EMS) (2012)
4. Bigdeli, M., Herzog, J., Lu, D.: Toric rings, inseparability and rigidity. In: Ene, V., Miller, E. (eds.) Multigraded Algebra and Applications, pp. 41–75. Springer International Publishing, Cham (2018)
5. Cox, D., Little, J., Schenck, H.: Toric Varieties, Volume 124 of Graduate Texts in Mathematics. American Mathematical Society (2011)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献