Cuplength estimates for periodic solutions of Hamiltonian particle-field systems

Author:

Fabert OliverORCID,Lamoree Niek

Abstract

AbstractWe consider a natural class of time-periodic infinite-dimensional nonlinear Hamiltonian systems modelling the interaction of a classical mechanical system of particles with a scalar wave field. When the field is defined on a space torus$${\mathbb {T}}^d={\mathbb {R}}^d/(2\pi {\mathbb {Z}})^d$$Td=Rd/(2πZ)dand the coordinates of the particles are constrained to a submanifold$$Q\subset {\mathbb {T}}^d$$QTd, we prove that the number of contractibleT-periodic solutions of the coupled Hamiltonian particle-field system is bounded from below by the$${\mathbb {Z}}_2$$Z2-cuplength of the space$$\Lambda ^{{\text {contr}}} Q$$ΛcontrQof contractible loops inQ, provided that the square of the ratio$$T/2\pi $$T/2πof time periodTand space period$$X=2\pi $$X=2πis a Diophantine irrational number. The latter condition is necessary since for the infinite-dimensional version of Gromov–Floer compactness as well as for the$$C^0$$C0-bounds we need to deal with small divisors.

Funder

nederlandse organisatie voor wetenschappelijk onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Reference18 articles.

1. Abbondandolo, A., Majer, P.: A non-squeezing theorem for convex symplectic images of the Hilbert ball. Calc. Var. Part. Differ. Equ. 54(2), 1469–1504 (2015)

2. Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59, 254–316 (2006)

3. Bambusi, D., Galgani, L.: Some rigorous results on the Pauli–Fierz model of classical electrodynamics. Ann. IHP Phys. théor. 58(2), 155–171 (1993)

4. Benci, V.: Periodic solutions of Lagrangian systems on a compact manifold. J. Differ. Equ. 63, 135–161 (1986)

5. Cieliebak, K.: Pseudo-holomorphic curves and periodic orbits on cotangent bundles. J. Math. Pures Appl. 73, 251–278 (1994)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3