$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity

Author:

Pardo RosaORCID

Abstract

AbstractWe consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ - Δ u = f ( x , u ) , in $$\Omega ,$$ Ω , with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ Ω R N with $$N> 2,$$ N > 2 , is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ L ( Ω ) a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$ L 2 ( Ω ) -norm, where $$2^*=\frac{2N}{N-2}\ $$ 2 = 2 N N - 2 is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$ f ( x , s ) = a ( x ) | s | 2 N / r - 2 s [ log ( e + | s | ) ] β , where $$a\in L^r(\Omega )$$ a L r ( Ω ) with $$N/2<r\le \infty $$ N / 2 < r , and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$ 2 N / r : = 2 1 - 1 r . Assume $$N/2<r\le N$$ N / 2 < r N . We show that for any $$\varepsilon >0$$ ε > 0 there exists a constant $$C_\varepsilon >0$$ C ε > 0 such that for any solution $$u\in H^1_0(\Omega )$$ u H 0 1 ( Ω ) , the following holds: $$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$ [ log ( e + u ) ] β C ε ( 1 + u 2 ) ( 2 N / r - 2 ) ( 1 + ε ) . To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ H 0 1 ( Ω ) uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ L ( Ω ) uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.

Funder

Ministerio de Ciencia, Innovación y Universidades

Universidad Complutense de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Reference26 articles.

1. Bidaut-Veron, M.-F.: Local behaviour of the solutions of a class of nonlinear elliptic systems. Adv. Differ. Equ. 5(1–3), 147–192 (2000)

2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

3. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)

4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

5. Caldiroli, P., Malchiodi, A.: Singular elliptic problems with critical growth. Commun. Partial Differ. Equ. 27(5–6), 847–876 (2002)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3