Abstract
AbstractWe consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$
-
Δ
u
=
f
(
x
,
u
)
,
in $$\Omega ,$$
Ω
,
with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$
Ω
⊂
R
N
with $$N> 2,$$
N
>
2
,
is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$
L
∞
(
Ω
)
a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$
L
2
∗
(
Ω
)
-norm, where $$2^*=\frac{2N}{N-2}\ $$
2
∗
=
2
N
N
-
2
is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$
f
(
x
,
s
)
=
a
(
x
)
|
s
|
2
N
/
r
∗
-
2
s
[
log
(
e
+
|
s
|
)
]
β
, where $$a\in L^r(\Omega )$$
a
∈
L
r
(
Ω
)
with $$N/2<r\le \infty $$
N
/
2
<
r
≤
∞
, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$
2
N
/
r
∗
:
=
2
∗
1
-
1
r
. Assume $$N/2<r\le N$$
N
/
2
<
r
≤
N
. We show that for any $$\varepsilon >0$$
ε
>
0
there exists a constant $$C_\varepsilon >0$$
C
ε
>
0
such that for any solution $$u\in H^1_0(\Omega )$$
u
∈
H
0
1
(
Ω
)
, the following holds: $$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$
[
log
(
e
+
‖
u
‖
∞
)
]
β
≤
C
ε
(
1
+
‖
u
‖
2
∗
)
(
2
N
/
r
∗
-
2
)
(
1
+
ε
)
.
To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$
H
0
1
(
Ω
)
uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$
L
∞
(
Ω
)
uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.
Funder
Ministerio de Ciencia, Innovación y Universidades
Universidad Complutense de Madrid
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Reference26 articles.
1. Bidaut-Veron, M.-F.: Local behaviour of the solutions of a class of nonlinear elliptic systems. Adv. Differ. Equ. 5(1–3), 147–192 (2000)
2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)
3. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)
4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)
5. Caldiroli, P., Malchiodi, A.: Singular elliptic problems with critical growth. Commun. Partial Differ. Equ. 27(5–6), 847–876 (2002)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献