Author:
Dietzfelbinger M.,Gil J.,Matias Y.,Pippenger N.
Publisher
Springer Berlin Heidelberg
Reference29 articles.
1. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. of Alg., 7:567–583, 1986.
2. L. J. Carter and M. N. Wegman. Universal classes of hash functions. JCSS, 18:143–154, 1979.
3. B. Chor and O. Goldreich. On the power of two-point based sampling. J. Complexity, 5:96–106, 1989.
4. M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarian. Dynamic perfect hashing: Upper and lower bounds. Technical Report 70, Universität Paderborn, Gesamthochschule, Jan. 1991. Revised Version of the paper of the same title that appeared in FOCS '88, pp. 524–531.
5. M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions and dynamic hashing in real time. In ICALP '90 (LNCS 443), pp. 6–19, July 1990.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast;Lecture Notes in Computer Science;2024
2. Information-theoretically secure equality-testing protocol with dispute resolution;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25
3. Efficient Algorithms for Time Series Prediction Method;2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON);2022-11-11
4. A Hash Table Without Hash Functions, and How to Get the Most Out of Your Random Bits;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10
5. An extendable data structure for incremental stable perfect hashing;Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing;2022-06-09