Interaction between chloride ions mediated by carbon nanotubes: a chemical attraction

Author:

Dominguez-Flores Fabiola,Santos Elizabeth,Schmickler WolfgangORCID,Juarez Fernanda

Abstract

AbstractThe interaction between two Cl ions separated by the wall of a narrow carbon nanotube has been investigated by density functional theory (DFT) and by DFT-based tight binding (DFTB+). The direct Coulomb interaction between the ions is screened by the nanotube, no matter if the latter is conducting or semiconducting. The presence of the ions induces changes in the electronic density of states of the nanotube, which results in an effective attraction between the ions of the order of 0.2–0.3 eV. The interaction of the outside ions with the tube has a covalent component, when the two ions are near there is even a direct chemical attraction between the ions. In contrast to the effective attraction between two Li+ ions reported before (Juarez et al., Phys Chem Chem Phys 22:10,603, 2020), the effect cannot be explained in terms of physical concepts alone. DFTB+ performs well when compared with DFT, and lends itself to fast calculations for large systems.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electrochemistry,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximating constant potential DFT with canonical DFT and electrostatic corrections;The Journal of Chemical Physics;2023-04-10

2. Nanocatalyst in remediating environmental pollutants;Chemical Physics Impact;2022-06

3. Hydrogen adsorption on doped graphene investigated by a DFT-based tight-binding method;Journal of Physics: Condensed Matter;2021-10-06

4. Li-decorated carbon nanotubes: charge analysis;Fullerenes, Nanotubes and Carbon Nanostructures;2021-08-09

5. NMR studies of adsorption and diffusion in porous carbonaceous materials;Progress in Nuclear Magnetic Resonance Spectroscopy;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3