The orbital evolution of resonant chains of exoplanets incorporating circularisation produced by tidal interaction with the central star with application to the HD 158259 and EPIC 245950175 systems

Author:

Papaloizou J. C. B.

Abstract

AbstractWe study orbital evolution of multi-planet systems that form a resonant chain, with nearest neighbours close to first order commensurabilities, incorporating orbital circularisation produced by tidal interaction with the central star. We develop a semi-analytic model applicable when the relative proximities to commensurability, though small, are large compared to $$\epsilon ^{2/3},$$ ϵ 2 / 3 , with $$\epsilon $$ ϵ being a measure of the characteristic planet to central star mass ratio. This enables determination of forced eccentricities as well as which resonant angles enter libration. When there are no active linked three body Laplace resonances, the rate of evolution of the semi-major axes may also be determined. We perform numerical simulations of the HD 158259 and EPIC 245950175 systems finding that the semi-analytic approach works well in the former case but not so well in the latter case on account of the effects of three active three body Laplace resonances which persist during the evolution. For both systems we estimate that if the tidal parameter, $$Q',$$ Q , significantly exceeds 1000,  tidal effects are unlikely to have influenced period ratios significantly since formation. On the other hand if $$Q' < \sim 100$$ Q < 100 tidal effects may have produced significant changes including the formation of three body Laplace resonances in the case of the EPIC 245950175 system.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3