1. Badmos, O., Kopp, A., Bernthaler, T., & Schneider G. (2019). Image-based defect detection in lithium-ion battery electrode using convolutional neural networks. Journal of Intelligent Manufacturing.
https://doi.org/10.1007/s10845-019-01484-x
.
2. Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al. (2016). Wide and deep learning for recommender systems.
arXiv:1606.07792v1
.
3. Clevert, D., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs).
arXiv:1511.07289v5
.
4. Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural network ensembles. Expert Systems with Applications, 36, 3976–3982.
5. Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska R., & De Schutter, B. (2016). Deep convolutional neural networks for detection of rail surface defects. In International joint conference on neural networks (IJCNN).