A framework for fault detection and diagnostics of articulated collaborative robots based on hybrid series modelling of Artificial Intelligence algorithms

Author:

Polenghi AdalbertoORCID,Cattaneo LauraORCID,Macchi MarcoORCID

Abstract

AbstractSmart factories build on cyber-physical systems as one of the most promising technological concepts. Within smart factories, condition-based and predictive maintenance are key solutions to improve competitiveness by reducing downtimes and increasing the overall equipment effectiveness. Besides, the growing interest towards operation flexibility has pushed companies to introduce novel solutions on the shop floor, leading to install cobots for advanced human-machine collaboration. Despite their reliability, also cobots are subjected to degradation and functional failures may influence their operation, leading to anomalous trajectories. In this context, the literature shows gaps in what concerns a systematic adoption of condition-based and predictive maintenance to monitor and predict the health state of cobots to finally assure their expected performance. This work proposes an approach that leverages on a framework for fault detection and diagnostics of cobots inspired by the Prognostics and Health Management process as a guideline. The goal is to habilitate first-level maintenance, which aims at informing the operator about anomalous trajectories. The framework is enabled by a modular structure consisting of hybrid series modelling of unsupervised Artificial Intelligence algorithms, and it is assessed by inducing three functional failures in a 7-axis collaborative robot used for pick and place operations. The framework demonstrates the capability to accommodate and handle different trajectories while notifying the unhealthy state of cobots. Thanks to its structure, the framework is open to testing and comparing more algorithms in future research to identify the best-in-class in each of the proposed steps given the operational context on the shop floor.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3