1. Aouf, M., Lyanage, L., & Hansen, S. (2008). Review of data mining clustering techniques to analyze data with high dimensionality as applied in gene expression data. In Proceedings of the international conference on service systems and service management (pp. 1–5).
2. Balabanov, T., Hristova, P. K., Doukovska, L., Hadjiski, M., & Beloreshki, S. (2011). Neural network model of mill-fan system elements vibration for predictive maintenance. In Proceedings of the international symposium on innovations in intelligent systems and applications (pp. 410–414).
3. Bastos, P., Lopes, R., Pires, L., & Pedrosa, T. (2009). Maintenance behavior-based prediction system using data mining. In Proceedings of the IEEE international conference on industrial engineering and engineering management (pp. 2487–2491).
4. Bennane, A., & Yacout, S. (2012). LAD-CBM; new data processing tool for diagnosis and prognosis in condition-based maintenance. Journal of Intelligent Manufacturing, 23(2), 265–275.
5. Chang, C. Y., Chang, C. H., Li, C. H., & Jeng, M. D. (2008). Learning vector quantization neural networks for LED wafer defect inspection. International Journal on Innovative Computing, Information and Control, 4(10), 2565–2579.