Machine prognostics based on sparse representation model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
http://link.springer.com/content/pdf/10.1007/s10845-015-1107-8.pdf
Reference35 articles.
1. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322. doi: 10.1109/TSP.2006.881199 .
2. Batko, W. (1984). Prediction method in technical diagnostics (4th ed.). Sc. Dr. Thesis Cracov Mining Academy.
3. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.
4. Candès, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.
5. Chryssolouris, G., & Toenshoff, H. (1982). Effects of machine-tool-workpiece stiffness on the wear behaviour of superhard cutting materials. CIRP Annals-Manufacturing Technology, 31(1), 65–69.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transfer learning based deep learning model and control chart for bearing useful life prediction;Quality and Reliability Engineering International;2023-01-10
2. Discrete Cosine Transformation and Temporal Adjacent Convolutional Neural Network-Based Remaining Useful Life Estimation of Bearings;Shock and Vibration;2020-06-09
3. Technical data-driven tool condition monitoring challenges for CNC milling: a review;The International Journal of Advanced Manufacturing Technology;2020-04
4. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions;Mechanical Systems and Signal Processing;2019-12
5. Predicting Remaining Useful Life Based on Hilbert–Huang Entropy with Degradation Model;Journal of Electrical and Computer Engineering;2019-02-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3