Metal- and antibiotic-resistant heterotrophic plate count bacteria from a gold mine impacted river: the Mooi River system, South Africa

Author:

Bosch Janita,Bezuidenhout Carlos,Coertze Roelof,Molale-Tom Lesego

Abstract

AbstractThe Wonderfonteinspruit, South Africa, is highly impacted by a century of gold mining activities. The aim of this study was to investigate the physico-chemical properties of the Wonderfonteinspruit and the receiving Mooi River system, the levels of antimicrobial (metals and antibiotics) resistance characteristics and heterotrophic bacteria levels in these water systems. Various physico-chemical parameters were determined. R2A agar and R2A agar supplemented with antimicrobials were used to enumerate heterotrophic bacteria. Morphologically distinct antimicrobial-resistant isolates were purified and screened for antibiotic susceptibility by a disc diffusion method. Selected isolates were identified, and minimum inhibitory concentration ranges determined. Among the antimicrobial resistant isolates, 87% were resistant to at least one antibiotic. Of these, almost 50% were resistant to more than 3 antibiotic classes. A large proportion was resistant to all 7 antibiotics tested. Phyla detected were Proteobacteria, Firmicutes and Bacteriodetes. High MIC levels for metals and antibiotics were detected among all the genera. Results demonstrate potential impacts of physico-chemical properties on levels of antimicrobial-resistant bacteria. Metal-resistant bacteria were also resistant to multiple antibiotics, suggesting that metal pollution from mining may be responsible for co-selection and maintenance of antibiotic-resistant bacteria in this aquatic system.

Funder

National Research Foundation

Water Research Commission

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3