Determining half-life of SARS-CoV-2 antigen in respiratory secretion

Author:

Guang Yang,Hui LiuORCID

Abstract

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily transmitted from person to person through respiratory droplets and aerosols. It is also possible for the virus to be transmitted indirectly through environmental contamination. The likelihood of environmental transmission depends on several factors, including the survival time of the virus in respiratory secretions. However, the stability of SARS-CoV-2 in respiratory secretions has not been investigated. In this study, we compared the half-life of the SARS-CoV-2 antigen in respiratory secretion under different conditions. We applied respiratory secretion (5 µL) to glass slides, air-dried the slides for 1 h, and kept them at 24 °C or 4 °C for 10 days. Respiratory secretions were also placed in test tubes (sealed to preserve moisture) and in normal saline for 10 days. The concentration of SARS-CoV-2 antigen in all samples was simultaneously measured using colloidal gold immunochromatography, and the half-life of the antigen was calculated. The half-life of the antigen in the wet (sealed tube) and saline samples at room temperature was 5.0 and 2.92 days, respectively. The half-life of the antigen in the air-dried sample at room temperature and at 4 °C was 2.93 and 11.4 days, respectively. The half-life was longer in respiratory secretions than that in normal saline. The half-life was also longer in respiratory secretions, at a lower temperature, and under wet conditions. Therefore, environmental transmission can also play a significant role in the spread of the virus. Robust prevention and control strategies could be developed based on the half-life of the antigen in respiratory secretions.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3