A novel modeling approach for a generalizable photo-Fenton-based degradation of organic compounds

Author:

Audino Francesca,Pérez-Moya Montserrat,Graells Moisès,Espuña Antonio,Csukas Bela,Varga Monika

Abstract

AbstractThis work aims at proposing and validating a model that can be exploited for the future development of industrial applications (e.g., process design and control) of Fenton and photo-Fenton processes. Hence, a compromise modeling solution has been developed between the non-generalizable accuracy of the first principles models (FPMs) and the oversimplification of the empirical models (EMs). The work presents a novel model of moderate complexity that is simplified enough to be generalizable and computationally affordable, while retaining physical meaning. The methodology is based on a general degradation mechanism that can be algorithmically generated from the carbon number of the target compound, as well as from the knowledge of two kinetic parameters, one for the faster initial rate and the other one for the subsequent degradation steps. The contaminant degradation mechanism has been combined with an appropriately simplified implementation of the well-known Fenton and photo-Fenton kinetics. This model describes the degradation not only of the target compound and of the oxidant, but also of total organic carbon (TOC), which is used to define the overall quality of the water. Experimental design techniques were used along with a non-conventional modeling methodology of programmable process structures (PPS). This novel modeling approach was applied and validated on the degradation of three model compounds. A successful prediction of the evolution of the contaminants H2O2 and TOC was confirmed and assessed by the root mean square error (RMSE).

Funder

MINECO

European Regional Development Fund

EFOP

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3