Abstract
AbstractNanoscale zero-valent iron (nZVI) has the potential to degrade a diversity of chlorinated compounds, and it is widely used for remediation of contaminated groundwaters. However, some frequently detected contaminants such as dichloromethane (DCM) and 1,2-dichloroethane (1,2-DCA) have shown nearly no reactivity with nZVI. Here, we tested the feasibility of combining anaerobic dechlorinating bacteria, Dehalobacterium and Dehalogenimonas, and nZVI as a treatment train to detoxify chlorinated methanes (i.e., chloroform-CF- and DCM), and 1,2-DCA. First, we showed that CF (500 μM) was fully degraded by 1 g/L nZVI to DCM as a major by-product, which was susceptible to fermentation by Dehalobacterium to innocuous products. Our results indicate that soluble compounds released by nZVI might cause an inhibitory impact on Dehalobacterium activity, avoiding DCM depletion. The DCM dechlorination activity was recovered when transferred to a fresh medium without nZVI. The increase in H2 production and pH was discarded as potential inhibitors. Similarly, a Dehalogenimonas-containing culture was unable to dichloroeliminate 1,2-DCA when exposed to 1 g/L nZVI, but dechlorinating activity was also recovered when transferred to nZVI-free media. The recovery of the dechlorinating activity of Dehalobacterium and Dehalogenimonas suggests that combination of nZVI and bioremediation techniques can be feasible under field conditions where dilution processes can alleviate the impact of the potential inhibitory soluble compounds.
Funder
Universitat Autònoma de Barcelona
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献