Synthesis of new Cr2O3/Fe2O3/glass composites from industrial wastes; from undesired to advanced optical products

Author:

Besisa Dina H. A.ORCID,Mohamed Hanan H.,Ewais Emad M. M.,Ahmed Yasser M. Z.,Amin Amira M. M.

Abstract

AbstractFor the tendency toward cleaner production and safe conversion of undesired toxic wastes to highly priced advanced products, this work introduces new ceramics/glass composites of Cr2O3/Fe2O3/lead silicate glass (LSG) from industrial LSG wastes. Both chromia Cr2O3 and hematite Fe2O3 ceramics are added equally to the LSG wastes with different percentages (10, 20, and 30 wt.%) via the pressureless sintering method. The competitiveness of this work is dependent on the conversion of undesired waste materials into advanced/smart optical materials with a low cost and an environmentally friendly method. Hence, the influence of both Cr2O3 and Fe2O3 additions on the behavior and the different characteristics of the lead silicate wastes are comprehensively investigated. Evaluation of the final ceramics/glass composites was achieved through their phase composition, microstructure, optical, and magnetic characteristics. The results verified that the insertion of both chromia and hematite together into the glass waste had a key role in improving its morphological properties and optical and magnetic behaviors. Composite with 30% of Cr2O3/Fe2O3 gave the highest optical absorbance of 90%, the lowest and best band gap energy of 1.68 ev, and the highest refractive index of 2.85. Also, it recorded the best magnetic behavior with the highest saturation magnetization of 139.700 × 10−2A m2 kg−1 and the best coercivity of 190.0 Oe. These findings confirmed the successful clean conversion of the hazardous lead silicate waste into advanced products with promising optoelectronic characteristics. Graphical abstract

Funder

Central Metallurgical Research and Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3