Abstract
AbstractInsecticides are dedicated to impair the insect organisms, but also have an impact on other, non-target organisms, including humans. In this way, they became important risk factor for disturbance of physiological homeostasis and can be involved in the development of diseases or in deterioration of existing conditions. The influence of sublethal doses of various insecticides on vertebrates’ and invertebrates’ organisms has been previously observed. In this paper, we have evaluated the impact of exposure to extremely low dose of neurotoxin, bendiocarb (0.1 nM), a commonly used carbamate insecticide on a model organism in neurobiology—Periplaneta americana. The assessment was performed on all levels of animal organism from molecular (oxidative stress parameters: phosphorylation level of proteins, cAMP level, protein kinase A and C levels, and octopamine) to physiological (heart beat and gas exchange tests) and behavioral (motor skills assay, grooming test). Exposure to such a low level of bendiocarb did not cause direct paralysis of insects, but changed their grooming behavior, decreased heart rate, and increased gas exchange. We also observed the increased parameters of oxidative stress as well as stressogenic response to 0.1 nM bendiocarb exposure. Exposure to a trace amount of bendiocarb also increased sensitivity to effective doses of the same insecticide, thus acts as preconditioning. These results force us to reconsider the possible risk from frequent/continuous exposure to traces of pesticide residues in the environment to human health.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Reference53 articles.
1. Abd-Ella A, Stankiewicz M, Mikulska K, Nowak W, Pennetier C, Goulu M, Fruchart-Gaillard C, Licznar P, Apaire-Marchais V, List O, Corbel V, Servent D, Lapied B (2015) The repellent DEET potentiates carbamate effects via insect muscarinic receptor interactions: an alternative strategy to control insect vector-borne diseases. PLoS ONE 10(5):e0126406. https://doi.org/10.1371/journal.pone.0126406
2. Ansari MS, Moraiet MA, Ahmad S (2014) Insecticides: impact on the environment and human health. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health: natural and anthropogenic determinants. Springer Nature, Switzerland, pp 99–123. https://doi.org/10.1007/978-94-007-7890-0_6
3. Aslanturk A, Kalender S, Uzunhisarcikli M, Kalender Y (2011) Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. J Entomol Res Soc 13(3):27–38
4. Böröczky K, Wada-Katsumata A, Batchelor D, Zhukovskaya M, Schal C (2013) Insects groom their antennae to enhance olfactory acuity. Proc Natl Acad Sci 110(9):3615–3620. https://doi.org/10.1073/PNAS.1212466110
5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1006/ABIO.1976.9999
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献