Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO2, O2, and N2 permeability/selectivity

Author:

Felemban Bassem Fareed,Iqbal Sadia Sagar,Bahadar Ali,Hossain NaziaORCID,Jabbar Abdul

Abstract

AbstractIn this study, PDMS incorporated with SWCNTs have been fabricated via solution casting method for industrial applications and characterized by the analyses of SEM, FTIR, TGA, AFM, and MST. The modified membranes were further analyzed for CO2, O2, and N2 gas permeability. The strategic membranes have five different weight ratios (0.013, 0.025, 0.038, 0.050, 0.063) compared to neat PDMS membranes. The even distribution of SWCNTs in PDMS provided results that showed improvement in thermal stability. However, mechanical strength has been weakened with increased concentration of nanofiller because of the increase in the number of SWCNTs by increases that imperfections become more severe. The designed polymeric membranes with good thermal stability and adequate mechanical strength can be used for the selectivity and permeability of CO2, O2, and N2 gases. The effect of the PDMS-SWCNTs on gas permeability has been studied. 0.063 wt.% SWCNTs presented the maximum permeability of CO2 gas while maximum O2 and N2 gas permeability have been obtained by 0.013 wt.% SWCNTs. The ideal selectivity of mixed (50:50) gas conditions has been tested. The maximum CO2/N2 ideal selectivity was obtained by 0.050 and 0.063 wt.% SWCNTs while maximum O2/N2 ideal selectivity obtained by 0.050 wt.% SWCNTs. Therefore, the fabrication of this novel SWCNTs-PDMS membrane may lead to separating the industrial exhaust and be used as a potential membrane for environmental remediation in the future.

Funder

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3