Recovery of platinum group metals from spent automotive converters and their conversion into efficient recyclable nanocatalysts

Author:

Wiecka Zuzanna,Cota Iuliana,Tylkowski Bartosz,Regel-Rosocka MagdalenaORCID

Abstract

Abstract The study reported in this article has shown for the first time that strongly acidic solutions (pH < 0.5) obtained after hydrometallurgical treatment of spent automotive converters (SAC) may be valuable secondary sources of platinum group metal (PGM) nanoparticles (NPs). The PGM precipitation strongly depended on the solution pH; the yield of the precipitated PGM NPs increased considerably from 40% to almost 100% when the pH was adjusted to 7–8. To improve the NPs stability, commercial TiO2 was used as support to obtain efficient recyclable PGM@TiO2 catalysts. The size of the PGM NPs was smaller than 5 nm, while the diameter of the supported particles varied from 10 to 50 nm. The size and dispersion of PGM NPs on the support strongly depended on the pH of the medium: at pH < 0.5, the Pt and Pd NPs were significantly smaller than the NPs obtained at pH 7–8. Also, in the case of Pt@TiO2 and Rh@TiO2, the NPs were well dispersed on the support in contrast to the large agglomerates of Pd@TiO2. The PGM@TiO2 showed catalytic properties in the reduction of 4-nitrophenol to 4-aminophenol, particularly, at pH above 11. The highest conversion of 98% was obtained with 1% Pd@TiO2 at pH 14 after only 15 min. The catalyst was easily separated from the reaction mixture and reused in 7 consecutive cycles without significant loss of activity. The PGM@TiO2 synthesized from the real solution showed a similar catalytic activity (70% conversion at pH 14) as that obtained from model solution.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3