Eco-friendly and solar light-active Ti-Fe2O3 ellipsoidal capsules’ nanostructure for removal of herbicides and organic dyes

Author:

Mohamed Hanan H.,Besisa Dina H. A.

Abstract

AbstractIn this work, Ti-doped Fe2O3 with hollow ellipsoidal capsules nanostructure has been prepared in a green manner using plant extract (flax seed). This new green hematite nanomaterial has been evaluated as photocatalyst for water treatment by testing its activity for degradation of bromophenol blue dye (BPB) and 2,4-dichlorophenoxy acetic acid (2,4-D) herbicide. For a better understanding of the green material properties, a comparison with the pristine Fe2O3 nanospheres previously prepared by the same procedure is included. Structural and optical properties of the green prepared materials are studied. The results revealed the success doping of Ti4+ at Fe3+ site, without forming any of TiO2 phases. It was also found that the Ti doping resulted in the reduction of the band gap of Fe2O3 as well as changing the morphology. The Ti-doped Fe2O3 nanomaterial exhibited an enhanced photocatalytic activity either for BPB dye or for 2,4-D degradation with more than 2 times higher rate than that using pristine Fe2O3.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3